matlab绘制曲线相交的交点

1.使用plot()画基本图形

x1=linspace(1,1,10);%X1-X2 (1到1)产生10个点
y1=linspace(1,2,10);%Y1到Y2 (1到2)产生10个点
plot(x1,y1);
hold on
x2=linspace(1,2,10);%从1到2产生10个点,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2
y2=linspace(2,1,10);%从2到1产生10个点,1.9,1.8,1.7,1.6,1.5,1.4,1.3,1.2,1.2,1.1
plot(x2,y2);%将各个点坐标连接成线
hold on
x3=linspace(2,2,10);
y3=linspace(1,2,10);
plot(x3,y3);
grid on;
xlim([0.5,2.5]); ylim([0.5,2.5])
plot([1 1 2 2],[1 2 1 2],'o');

在这里插入图片描述
2.线与线的交点:

%先在同一窗口中画出两个图
x=[1,113,334,361,440,964,964,1];
y=[1,107,324,323,400,400,471,471];%数据准备
plot(x,y,'.-')%用点画线将点(x,y)连接成线
              %用plot绘图是折线图,即把相邻两点之间用直线连接起来
hold on %保持当前的图与坐标轴属性,以便后续的绘图命令添加到现有的图表中
x1=[0 1000]; %数据准备
y1=x1-25;
plot(x1,y1,'r') %用红色线画出y1函数图形

%下面确定交点并标出交点
y2=471;
x2=y2+25; %确定交点(x2,y2)
[x3,y3]=solve('y=324+(323-324)/(361-334)','y=x-25');
x3=double(x3);y3=double(y3); %确定交点(x3,y3)
plot([x2, x3],[y2,y3],'mo')  %以红紫色圆圈标出交点
legend('plot数据','y=x-25', '交点',2)%添加图例

在这里插入图片描述
3.在同一个图中画出下面两个曲线并标注交点:
x1^2 - 2x1x2 - x1 + x2^2 - 2=0
x1^2 - 2x1x2 + x2^2 + 5*x2 - 2=0

clear all;clc;
syms x1 x2
[s1,s2]=solve('x1^2-2*x1*x2-x1+x2^2-2=0','x1^2-2*x1*x2+x2^2+5*x2-2=0');%求方程组的解
s1=double(s1);
s2=double(s2);
f1=x1^2-2*x1*x2-x1+x2^2-2;
f2=x1^2-2*x1*x2+x2^2+5*x2-2;
h1=ezplot(f1);%画f1的曲线
set(h1,'Color','r')%将f1曲线颜色设置成红色,其中h1为曲线的handle
hold on;  %保持当前的图与坐标轴属性,以便后续的绘图命令添加到现有的图表中
h2=ezplot(f2);%画f2的曲线
set(h2,'Color','k')%将f2曲线颜色设置成黑色,其中h2为曲线的handle
grid on
plot(s1,s2,'r.','MarkerSize',20)%用红色的点标记交点,标记点大小为20

在这里插入图片描述
4.求下图双曲线方程x2/42-y2/32=1和直线方程y=1/2*x+1的交点:

close all; clear all; clc
syms x y    %定义变量x,y
s=solve(x^2/4^2-y^2/3^2==1,y==1/2*x+1,x,y);%求双曲子与直线的交点
X=double(s.x);
Y=double(s.y);
h1=ezplot(x^2/4^2-y^2/3^2==1,[-10,10]);
set(h1,'color','r','LineWidth',2)%设置线的颜色为红色
axis equal;
hold on;
h2=ezplot(y==1/2*x+1,[-10,10]);
set(h2,'color','k','LineWidth',2)
legend('x^2/4^2-y^2/3^2=1','y=1/2*x+1',2)%在左上角加入图例
plot(X,Y,'r.','MarkerSize',20)%用红色的实心点标注交点
text(X(1),Y(1),'(7.4788, 4.7394)','FontSize',12)%在交点处标注交点
text(X(2),Y(2),'(-4.2788, -1.1394)','fontsize',12)
plot(0,[-15:0.01:15],'k');%画出y轴
plot([-15:0.01:15],0,'k');%画出x轴

在这里插入图片描述
5.抛物线方程y^2=4x和直线方程y=2x-1的交点。

close all; clear all; clc
syms x y
s=solve(y^2==4*x,y==2*x-1,x,y);
X=double(s.x);
Y=double(s.y);
h1=ezplot(y^2==4*x);
set(h1,'color',[0,0,0],'LineWidth',2)
axis equal;
hold on;
h2=ezplot(y==2*x-1);
set(h2,'color',[0,0,1],'LineWidth',2)
legend('y^2=4*x','y=2*x-1',2)
plot(X,Y,'r.','MarkerSize',20)
text(X(1),Y(1),'(1.8660,2.7321)','FontSize',12)
text(X(2),Y(2),'(0.1340,-0.7321)','fontsize',12)
plot(0,[-10:0.01:10],'k');
plot([-10:0.01:10],0,'k')

在这里插入图片描述
6.椭圆方程x2/52+y2/42=1和双曲线方程x2/42-y2/32=1的交点。

close all; clear all; clc
syms x y
s=solve(x^2/5^2+y^2/4^2==1,x^2/4^2-y^2/3^2==1,x,y);
X=double(s.x);
Y=double(s.y);
h1=ezplot(x^2/5^2+y^2/4^2==1);
set(h1,'color',[0,0,0],'LineWidth',2)
axis equal; hold on;
h2=ezplot(x^2/4^2-y^2/3^2==1);
set(h2,'color',[0,0,0],'LineWidth',2)
plot(X,Y,'r.','MarkerSize',20)
text(X(1),Y(1),'(4.5596, 1.6415)','FontSize',11)
text(X(2),Y(2),'(-4.5596, 1.6415)','fontsize',11)
text(X(3),Y(3),'(4.5596, -1.6415)','FontSize',11)
text(X(4),Y(4),'(-4.5596, -1.6415)','fontsize',11)
plot(0,[-10:0.01:10],'k');plot([-10:0.01:10],0,'k')

在这里插入图片描述
7.求两个双曲线的交点

close all; clear all; clc
syms x y
s=solve(x^2-y^2/15==1,(x-8)^2/4-y^2/12==1);
X=double(s.x);
Y=double(s.y);
h1=ezplot(x^2-y^2/15==1,[-100,100,-100,100]);
set(h1,'color','b','LineWidth',2)
axis equal; hold on;
h2=ezplot((x-8)^2/4-y^2/12==1,[-100,100,-100,100]);
set(h2,'color','k','LineWidth',2)
plot(X,Y,'g.','MarkerSize',20)
text(X(1),Y(1),'(2.5,(3*35^(1/2))/2)','FontSize',11)
text(X(2),Y(2),'(2.5, -(3*35^(1/2))/2)','fontsize',11)
text(X(3),Y(3),'(6.5, (15*11^(1/2))/2)','FontSize',11)
text(X(4),Y(4),'(-6.5, (15*11^(1/2))/2)','fontsize',11)

在这里插入图片描述
9.双曲线定位问题:

close all; clear all; clc
syms x y
f1 = sqrt(x^2+(y-0.35/1.414)^2)-sqrt((x-0.15/1.414)^2+(y-0.20/1.414)^2)-(2.5000e-04)*340;
f2 = sqrt((x-0.05/1.414)^2+(y-0.15/1.414)^2)-sqrt((x-0.30/1.414)^2+(y-0.05/1.414)^2)-(1.25000e-04)*340;
s = solve(f1,f2);
X = double(s.x);
Y = double(s.y);
h1=ezplot('abs(sqrt(x^2+(y-0.35/1.414)^2)-sqrt((x-0.15/1.414)^2+(y-0.20/1.414)^2))-(2.5000e-04)*340',[-0.8,0.8,-0.8,4])
set(h1,'color','b','LineWidth',2)
hold on;
h2=ezplot('abs(sqrt((x-0.05/1.414)^2+(y-0.15/1.414)^2)-sqrt((x-0.30/1.414)^2+(y-0.05/1.414)^2))-(1.25000e-04)*340',[-0.8,0.8,-0.8,4])
set(h2,'color','r','LineWidth',2)
legend('f1','f2',2)
plot(X,Y,'g.','MarkerSize',20)
text(X(1),Y(1),'A','FontSize',11)
text(X(2),Y(2),'B','fontsize',11)
text(X(3),Y(3),'C','FontSize',11)
text(X(4),Y(4),'D','fontsize',11)

在这里插入图片描述

已标记关键词 清除标记
matlab离散点连成的两曲线交点-intersections.m 本帖最后由 kastin 于 2012-12-29 11:47 编辑 引言     曾经思考过曲面求交,结果发现是学术界的一个难题,并且也想出了一个当前广泛使用方法原理一样的近似解法(追踪法)。当然网上也有很多方法,只不过那些方法非常粗糙,无非就是meshgrid出离散网格,比较两曲面在某位置的坐标是否在某一精度范围内,然后标记显示之。这个方法仅仅当离散网格非常细的时候才比较精确。除此之外,还有个非常严重的问题:上面的“精度范围”不是你随心所欲给的,而且也没规律寻找,当给得不恰当的时候,在格点处两曲面点作比较,会出很多个符合要求的点,或者一个也没有。这样就会使得交线非常曲折,甚至断裂等,严重影响精确度。 ———————————————————分割线————————————————————————     当然,既然有曲面求交,那么也有曲线求交,其基本结构就是两曲线求交。只是曲线求交问题,事先得澄清一些注意点:     1. 数学分析层面求两曲线交点,其实就是方程组求解;     2. “曲线”概念包括“直线”(处处曲率半径为无穷大);     3. Matlab的重点是离散点 矩阵运算,因此所有运算都是基于离散的,因而这里的曲线并不是绝对光滑的。     4. 近似试探与未知函数表达式。 对于1,我想说的是,如果你想要求得两曲线的精确交点,并且一个不漏,那就直接求解方程组,不用看本帖下文; 对于2,直线在Matlab里面是两个点确定,因此交点如果是一段线(无穷个点)的情况,可能只是显示两端点为交点; 对于3,很简单的例子,参数方程 x=cos,y=sin 在数学分析(即连续空间)层面上是个圆,但是如果你在离散t的时候,间距比较大,那么最后Matlab绘制的图像不是圆,而是正多边形了。因此,此时我们讨论曲线交点是这个离散点连线的图形与其他图形的交点,而非圆与其他交点。这也是我在标题中加了“离散点连成”的修饰词,防止被误会。 对于4,既然是求曲线交点,那么本方法可以作为求方程组的近似解。当然,如果离散点够多,解的精确度可以保证,不过不能保证一个不漏。另外就是,对于一组离散点构成的曲线,很难知道它们的解析表达式,因此想通过非线性方程组求解的方法来求交点,就不大可能了(不过你可以用曲线拟合出函数解析式),因此,本帖的方法将会是一个较为有效求交点的方法。     废话了那么多,下面就说说曲线交点的方法吧。除了求解方程组,很多人想到的方法就是“离散点 判断距离是否足够接近”,这个方法原理跟引言中曲面求交的方法是一样的。因此缺点也是一样的——太粗糙了。网上这种方法的代码也很多,这里就不上了。 下面将阐述我的方法以及给出例子代码。     我有两种思路,一种是高级绘图层面的(不涉及到底层操作),一种是底层的。我只给出了第一种的代码,因为我不会底层操作。     思路一:既然matlab曲线绘图是通过有序离散点依次连线形成,也就是说,通过“以直代曲”的过程,那么曲线交点无非就是离散点(结点)或者两线段交点。这比上面直接用交点附近的结点替代交点的方法要精确得多了。而两直线交点很容易求,只要知道四个点坐标,那么交点精确坐标自然可以表示出来。这就是求交点的原理。只是还有一些细节处理和要注意的地方,我会留到后面再详细说。     思路二:仔细观察两曲线交点的特性,很容易发现,其实交点就是操作系统底层绘图重叠的那些像素点。因此,只要给要绘制的像素点做个标记,将那些重合的点突出显示(比如换个颜色),那么就相当于显示出交点了。这种方法由于是本质性的,因此不会遗漏任何交点,而且精确度极高,适用范围广。Matlab提供的plot plot3 surf等绘图函数都属于高级绘图,底层绘图(或称低级绘图)只有line surface以及patch等少数函数。但是,这里的“底层”并非真正的底层,因为它还是经过封装了的,而C 的MFC里面直接用刷子绘图,那才是依靠操作系统完成的真正的“底层”绘图操作(包括所有窗口都是操作系统绘制的)。这里扯远了,想要说明的就是底层绘图的概念而已。只是我不会用matlab实现这些底层绘图。     上面说了思路,下面就详细说说一些注意点和需要处理的细节。     为了算法的健壮性,就必须考虑各种奇异的情况,防止bug。我们要考虑曲线有分支(很多代数曲线是这样的,代数几何里面研究的东西)、间断跳跃(有绝对值函数或者存在渐近线情况)、首尾是交点、在切点相交,等等这些情况。而且对于定位交点处附近的四个最近端点也是个问题(因为这里存在一个情况,如果曲线1上的一条线段与曲线2上的两条
相关推荐
©️2020 CSDN 皮肤主题: 酷酷鲨 设计师:CSDN官方博客 返回首页